
Coms 331 Assignment 9 Fall 2019

Introduction

This assignment is the first in a series of assignments that will build the canal boat applica-
tion. This is also the first assignment that renders a 3-dimensional object. To keep it simple,
we will not include any lighting effects. Those will come in subsequent assignments. Thus,
the rendered scene will not look 3-dimensional, but we have to start somewhere.

The object that will will create and render is the two side walls of the canal. Each one
will be a long, thin rectangular box. The two walls are identical (actually mirror images of
each other).

The User Interface

If the user resizes the window, the scene will remain centered (same look point and eye
point). That will happen automatically. If the user presses the left or right arrow keys, the
eye point will rotate left or right, respectively (eye yaw). If the user presses the up or down
arrow keys, the eye point will rotate up or down (eye pitch). If the user presses the plus (+)
or minus (-) keys, the eye point will move toward or away from the look point (eye dist).

By moving the eye point around, we may gain a sense of the depth of the object.

Moving the Eye Point

It is easy to move the eye point. When the left or right arrow keys are pressed, increment
or decrement eye yaw by a small amount. When the up or down arrow keys are pressed,
increment or decrement eye pitch by a small amount. When the wheel is scrolled, multiply
or divide eye dist by a factor close to 1.0f. Then call setView() to create a new view
matrix and pass it to the shaders.

The setView() Function

The setView() function will be given. It first computes the location of the eye point by
using the yaw θ, pitch φ, and distance d values with the formulas

x = d cosφ sin θ,

y = d sinφ,

z = d cosφ cos θ.

Then it passes the eye point, the look point, and the up vector to the lookAt() function,
which returns the view matrix. The view matrix is passes over to the shader. This function
must be called everytime the eye point is moved.

1



The Shaders

The shaders will be pass-through shaders. Only the vertex shader will apply the view,
model, and projection matrices to the vertex and it will apply the normal matrix to the
normal vector (optional for now).

Program Design

Create a Wall class with member functions

Wall();

void create();

void draw() const;

and with a single data member

int m_num_quads;

Use a struct VertexData3D defined as

struct VertexData3D

{

vec3 pos;

vec3 color;

vec3 norm;

}

In the create() function, assign values to a dynamically allocated array, giving the x-,
y-, and z-coordinates of each vertex of the wall (box), the RGB vector for the color (light
gray), and the x-, y-, and z-coordinates of the surface normals. The box will have 6 sides
(or 5 if you choose to leave off the bottom). The surface normals will point in the positive
and negative directions of the three axes, depending on which face they are associated with.
Define each face of the wall as a quadrilateral.

The length, width, and height of the wall will be defined by global constants WALL LEN,
WALL WID, and WALL HGT. Use realistic values. The wall must be longer than a canal boat,
but not much longer, and canal boats were pretty long. The differential in water levels above
and below the canal lock was typically 8 feet, so the wall must be higher than 8 feet. The
width is the thickness of the wall, enough to keep the wall from collapsing. These constants
should be defined globally and then used in the create() function. That way, you can
change them later without needing to change the function.

At the end of the create() function, be sure to delete the array. It will be in the GPU’s
memory. We do not need to keep in in main memory.

There is also the space between the two walls, LOCK WID, which is just a wee bit wider
than the width of a canal boat. Typically, there was a 6-inch clearance on each side of the
canal boat.

2



The draw() function will use a for loop limited by number of quadrilaterals (m num quads),
which should be either 5 or 6. The value of m num quads should be calculated with the state-
ment

m_num_quads = sizeof(wall_data) / sizeof(VertexData3D) / 4;

The draw() function will include

for (int i = 0; i < m_num_quads; i++)

glDrawArrays(GL_TRIANGLE_FAN, 4 * i, 4);

along with a few other things, like moving the object from model coordinates to world
coordinates.

Due Date

This assignment will not be collected, but you should finish it by Wednesday, October 16.

3



End view

Side view

Top view

WALL_LEN

WALL_WID

W
ALL_H

G
T

W
ALL_W

ID

WALL_LEN

W
ALL_H

G
T

4



End view

Top view

LOCK_WID

LO
C

K_W
ID

5


